您选择的条件: Xiang Xi
  • Room-temperature continuous-wave Dirac-vortex topological lasers on silicon

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for single-mode large-area lasers. Here, we experimentally realize the first Dirac-vortex topological lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave single-mode linearly polarized vertical laser emission at a telecom wavelength. Most importantly, we confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.

  • Observation of bound states in the continuum in a micromechanical resonator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Bound states in the continuum (BICs) refer to physical states that possess intrinsic zero dissipation loss even though they are located in the continuous energy spectrum. BICs have been widely explored in optical and acoustic structures, leading to applications in sensing and lasing. Realizing BICs in micromechanical structures is of significant importance for both fundamental research and engineering applications. Here, we fabricated, with CMOS-compatible processes on a silicon chip, a wheel-shaped micromechanical resonator, in which we experimentally observed the BIC in the micromechanical domain. Such BICs result from destructive interference between two dissipative modes of the mechanical structure under broken azimuthal symmetry. These BICs are found to be robust against size variations of the dissipation channels. The demonstrated mechanical BIC can be obtained with a large and robust supporting structure, which substantially reduces device fabrication difficulty and allows for its operation in versatile environments for broader application areas. Our results open a new way of phonon trapping in micromechanical structures with dissipation channels, and produce long phonon lifetimes that are desired in many mechanical applications such as mechanical oscillators, sensors, and quantum information processors.

  • Realization of a quadrupole topological insulator phase in a gyromagnetic photonic crystal

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The field of topological photonics was initiated with the realization of a Chern insulator phase in a gyromagnetic photonic crystal (PhC) with broken time-reversal symmetry (T), hosting chiral edge states that are topologically protected propagating modes. Recent advances in higher-order band topology have discovered another type of topological state, as manifested by those modes localized at the corners of a sample, which are known as corner states. Here we report the realization of a quadrupole higher-order topological insulator phase in a gyromagnetic PhC, induced by a topological phase transition from the previously demonstrated Chern insulator phase. The evolution of the boundary modes from propagating chiral edge states to localized corner states has been characterized by microwave measurements. We also demonstrate topological bound states in the continuum, when the gyromagnetic PhC is magnetically tuned. These results extend the quadrupole topological insulator phase into T-broken systems, and integrate topologically protected propagating and localized modes in the same platform.

  • Unraveling the Angular Symmetry of Optical Force in a Solid Dielectric

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The textbook-accepted formulation of electromagnetic force was proposed by Lorentz in the 19th century, but its validity has been challenged due to incompatibility with the special relativity and momentum conservation. The Einstein-Laub formulation, which can reconcile those conflicts, was suggested as an alternative to the Lorentz formulation. However, intense debates on the exact force are still going on due to lack of experimental evidence. Here, we report the first experimental investigation of angular symmetry of optical force inside a solid dielectric, aiming to distinguish the two formulations. The experiments surprisingly show that the optical force exerted by a Gaussian beam has components with the angular mode number of both 2 and 0, which cannot be explained solely by the Lorentz or the Einstein-Laub formulation. Instead, we found a modified Helmholtz theory by combining the Lorentz force with additional electrostrictive force could explain our experimental results. Our results represent a fundamental leap forward in determining the correct force formulation, and will update the working principles of many applications involving electromagnetic forces.

  • Highly tunable broadband coherent wavelength conversion with a fiber-based optomechanical system

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The modern information networks are built on hybrid systems working at disparate optical wavelengths. Coherent interconnects for converting photons between different wavelengths are highly desired. Although coherent interconnects have conventionally been realized with nonlinear optical effects, those systems require demanding experimental conditions such as phase matching and/or cavity enhancement, which not only bring difficulties in experimental implementation but also set a narrow operating bandwidth (typically in MHz to GHz range as determined by the cavity linewidth). Here, we propose and experimentally demonstrate coherent information transfer between two orthogonally propagating light beams of disparate wavelengths in a fiber-based optomechanical system, which does not require any sort of phase matching or cavity enhancement of the pump beam. The coherent process is demonstrated by phenomena of optomechanically induced transparency and absorption. Our scheme not only significantly simplifies the experimental implementation of coherent wavelength conversion, but also extends the operating bandwidth to that of an optical fiber (tens of THz), which will enable a broad range of coherent-optics-based applications such as optical sensing, spectroscopy, and communication.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心